

Welcome to django-fractions’s documentation!

Contents:

	django-fractions
	Documentation

	Quickstart

	Features

	TODO

	Cookiecutter Tools Used in Making This Package

	Installation

	Usage
	Model Fields

	DecimalFractionField

	Form Fields

	Template Tags

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Credits
	Development Lead

	Contributors

	History
	Current

	5.0.0 (2023-01-08)

	4.0.0 (2022-08-10)

	3.1.0 (2022-12-26)

	3.0.0 (2022-08-10)

	2.0.0 (2020-09-13)

	1.1.0 (2017-06-04)

	1.0.0 (2016-12-31)

	0.4.0 (2016-08-29)

	0.3.2 (2015-08-28)

	0.3.1 (2015-08-12)

	0.3.0 (2015-08-12)

	0.2.1 (2015-08-06)

	0.2.0 (2015-08-06)

	0.1.0 (2015-08-01)

django-fractions

[image: _images/django-fractions.png]
 [https://badge.fury.io/py/django-fractions][image: _images/badge.svg]
 [https://github.com/jmichalicek/django-fractions/actions?query=workflow%3A%22Python+package%22]Fraction display and form fields for Django

Documentation

The full documentation is at https://django-fractions.readthedocs.org.

Quickstart

Install django-fractions:

pip install django-fractions

Add djfractions to settings.INSTALLED_APPS

Then use it in a project:

import djfractions

In templates:

{% load fractions %}
{% display_fraction 1.25 %}

In Forms:

from djfractions.forms import DecimalFractionField
from django import forms

class MyForm(forms.Form):
 a_fraction = DecimalFractionField()

Features

	Template tag for displaying float and Decimal values as fractions including mixed numbers

	DecimalFractionField form field which handles input such as “1/4”, “1 1/2”, “1 and 1/2”, and converts to a
decimal.Decimal instance

TODO

	Add unicode_fraction template tag to display the unicode fraction entity if available

	forms.FloatDecimalField to return a float rather than Decimal

	forms.SplitFractionWidget for having separate numerator and denominator form fields

	forms.SplitMixedFractionWidget for handling mixed number fractions with separate fields

	models.DecimalBackedFractionField() to store a Decimal value but return/accept it as a fraction

	models.FloatBackedFractionField() to store a Decimal value but return/accept it as a fraction

Cookiecutter Tools Used in Making This Package

	cookiecutter

	cookiecutter-djangopackage

Installation

At the command line:

$ easy_install django-fractions

Or, if you have virtualenvwrapper installed:

$ mkvirtualenv django-fractions
$ pip install django-fractions

After installation add djfractions to your settings.INSTALLED_APPS

Usage

Add djfractions to settings.INSTALLED_APPS

Model Fields

DecimalFractionField

djfractions.models.DecimalFractionField(verbose_name=None,
 name=None,
 max_digits=None,
 decimal_places=None,
 limit_denominator=None,
 coerce_thirds=True,
 **kwargs)

Takes a fractions.Fraction value, stores it as a decimal value,
and then returns it as a fractions.Fraction. This field is highly
based on Django’s models.DecimalField implementation and so
the max_digits and decimal_places arguments are required.

	param str verbose_name

	The verbose name of the field

	param str name

	Name of the field

	param int max_digits

	Maximum number of digits to use for the Decimal representation

	param int decimal_places

	Maximum number of decimal places to use for the Decimal representation

	param int limit_denominator

	Limits the fraction’s denominator to this value if it is set.

	paraam bool coerce_thirds

	If True, then when values which appear to be Decimal values which started as 1/3 or 2/3 will be forced back to 1/3 or 2/3 when retrieved from the database.

Form Fields

FractionField

FractionField(max_value=None,
 min_value=None,
 coerce_thirds=True,
 limit_denominator=None,
 use_mixed_numbers=True)

Returns a fractions.Fraction instance. Takes a string formatted
as a fraction such as 1/4, 1 1/4, 1-1/4, 1 and 1/4, or -1/4 as input in a form.

	param Decimal max_value

	The maximum value allowed for this field

	param Decimal min_value

	The minimum value allowed for this field

	param int limit_denominator

	Limits the fraction’s denominator to this value if it is set.

	param bool coerce_thirds

	If True, then when values which appear to be Decimal values which started as 1/3 or 2/3 will be forced back to 1/3 or 2/3 when retrieved from the database.

	param bool use_mixed_numbers

	If True initial values which are decimals and floats greater than 1 will be converted to a mixed number such as 1 1/2 in the form field’s value. If False then improper fractions such as 3/2 will be created. Defaults to True.

Example:

from django import forms
from djfractions.forms import FractionField

class MyForm(forms.Form):
 a_fraction = FractionField()

DecimalFractionField

DecimalFractionField(max_value=None,
 min_value=None,
 coerce_thirds=True,
 limit_denominator=None,
 use_mixed_numbers=True,
 max_digits=None,
 decimal_places=None)

Returns a decimal.Decimal instance. Takes a string formatted
as a fraction such as 1/4, 1 1/4, 1-1/4, 1 and 1/4, or -1/4 as input in a form.

	param bool coerce_thirds

	Defaults to True. If True then .3 repeating is forced to 1/3 rather than 3/10, 33/100, etc. and .66 and .67 are forced to 2/3.

	param int limit_denominator

	Set a maximum denominator to be used on fractions created from the field input.

	param bool use_mixed_numbers

	If True initial values which are decimals and floats greater than 1 will be converted to a mixed number such as 1 1/2 in the form field’s value. If False then improper fractions such as 3/2 will be created. Defaults to True.

	param max_value

	The maximum value allowed

	param min_value

	The minimum value allowed

	param int decimal_places

	The maximum number of decimal places the resulting Decimal value may have

	param int max_digits

	The maximum number of digits, including decimal places, the resulting Decimal may have.

Example:

from django import forms
from djfractions.forms import DecimalFractionField

class MyForm(forms.Form):
 a_fraction = DecimalFractionField()

Template Tags

display_fraction

{% display_fraction value limit_denominator allow_mixed_numbers coerce_thirds %}

The display_fraction tag displays a formatted fraction in an HTML template. It takes
a value and optional parameters to limit the denominator, allow mixed numbers, and
adjust decimal/float values which usually are the result of rounding thirds back to
thirds based fractions.

The output of this tag can be changed by overriding the djfractions/display_fraction.html
template. This is because there are a number of style choices you might make depending
on needs. In some cases <sup> and <sub> tags may cause issues with screen readers. You
may just want to add css classes for easier styling. The template context also includes
a unicode_entity value which has the html entity for the unicode value of a fraction
if one is available. The unicode html entity is preferred by some people, but only a
small number of fractions are supported (particularly if you must support very old browsers)
and the styling is frequently difficult to match up exactly with <sup> and <sub> tags.:

{% load fractions %}
{% display_fraction 1.5 %}

Would output:

1 ¹⁄₂

The template context:

	whole_number

	The whole number part of a fraction. If allow_mixed_numbers is False then
this will always be 0.

	numerator

	The numerator of a fraction. For values which are only a whole number the
numerator will be 0.

	denominator

	The denominator of a fraction. For values which are only a whole number the
denominator will be 1 for a fraction of 0/1.

	unicode_entity

	The unicode_entity is the html entity for the unicode fraction if one exists.

	allow_mixed_numbers

	The value passed to the tag for allow_mixed_numbers. Knowing this can be
useful in template display logic.

The following unicode fraction HTML entities are supported by django-fractions.
They may not all be supported by your browser.

	Entity

	IE 11

	Firefox 39

	Chrome 44

	½

	Yes

	Yes

	Yes

	⅓

	Yes

	Yes

	Yes

	⅔

	Yes

	Yes

	Yes

	¼

	Yes

	Yes

	Yes

	¾

	Yes

	Yes

	Yes

	⅕

	Yes

	Yes

	Yes

	⅖

	Yes

	Yes

	Yes

	⅗

	Yes

	Yes

	Yes

	⅘

	Yes

	Yes

	Yes

	⅙

	Yes

	Yes

	Yes

	⅚

	Yes

	Yes

	Yes

	&frac17;

	No

	No

	Yes

	⅛

	Yes

	Yes

	Yes

	⅜

	Yes

	Yes

	Yes

	⅝

	Yes

	Yes

	Yes

	⅞

	Yes

	Yes

	Yes

display_improper_fraction

{% display_improper_fraction value limit_denominator coerce_thirds %}

The display_improper_fraction tag works the same as display_fraction with
its allow_mixed_numbers set to False. It is just a shortcut for a common
use case.:

{% load fractions %}
{% display_improper_fraction 1.5 %}

Would output:

³⁄₂

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/jmichalicek/django-fractions/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

django-fractions could always use more documentation, whether as part of the
official django-fractions docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/jmichalicek/django-fractions/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up django-fractions for local development.

These instructions are out of date. I have moved to developing in a docker container in
a docker compose stack. I have not yet set that up to deal with multiple Python versions for tox.

	Fork the django-fractions repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/django-fractions.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv django-fractions
$ cd django-fractions/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ flake8 djfractions tests
$ python setup.py test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.7, 3.3, and 3.4. Check
https://travis-ci.org/jmichalicek/django-fractions/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ python -m unittest tests.test_djfractions

Credits

Development Lead

	Justin Michalicek <jmichalicek@gmail.com>

Contributors

None yet. Why not be the first?

History

Current

5.0.0 (2023-01-08)

	Forgot about the 4.0.0 mess when I published 3.1.0, so starting fresh again.
There are not really any backwards incompatible changes. See the 3.1.0 release notes.

	Fixing documentation and release history.

4.0.0 (2022-08-10)

	I’m dumb and goofed thing up and so this version exists on pypi

3.1.0 (2022-12-26)

	Add testing on python 3.11 by @jmichalicek in #30

	Fixed ‘Polynomial regular expression used on uncontrolled data’ codeQL issues which could be abused to impact performance.

3.0.0 (2022-08-10)

	Create codeql-analysis.yml by @jmichalicek in #21

	Add type checking by @jmichalicek in #22

	Update supported python versions to 3.7+ by @jmichalicek in #23

	fix: Django 4.0 deprecations by @GriceTurrble in #24

	Add testing of django 4.0 by @jmichalicek in #27

	Updated to support Django 4.1, drop old unsupported Django and Python versions by @jmichalicek in #29

2.0.0 (2020-09-13)

	Dropped support for Django 2.0 and lower and bump major version

	Dropped support for Python 3.4 and lower

	Updated DecimalFractionField to work on Django 2+ where from_db_field() does not take a context argument
and where the field is expected to have a context attribute like DecimalField.

	Cleared out a bunch of Python 2 compatibility code such as how calls to super() are made, usage of six, and
from __future__ imports.

1.1.0 (2017-06-04)

	add python 3.6 and django 1.11 to tox.ini - still a bit broken

	convert to matrix for environments in .travis.yml
because tox only wants to test py3.6 when installed under 3.6
but will not test 3.5 when running with python 3.6 as the base.

	Remove invalid ROOT_URLCONF from test django config
There is no urls.py for djfractions, don’t tell it to use one. Older
django versions were ok with this, but 1.11 is pickier about the correctness.

	add current changes to HISTORY.rst

	Adjust SILENCED_SYSTEM_CHECKS setting during tests
Django 1.11 is stricter about system checks and will not even run
the tests where there are some errors we specifically test for due
to older django versions letting you make these mistakes.

	Added optional max_digits and decimal_places parameters to
forms.DecimalFractionField so that returned Decimal objects have the
desired max_digits and decimal_places when not directly tied to a
models.DecimalField() on a ModelForm

1.0.0 (2016-12-31)

	Stop subclassing Django’s DecimalField and duplicate small amounts of code
as necessary for db backend compatibility. Too many things need to be
handled differently. Main cause of major version bump.

	Update forms.FractionField to skip over max_digits and decimal_places kwargs which
will get passed in by models.fields.DecimalFractionField

	Add models.fields.DecimalFractionField.formfield() so that a
forms.FractionField will be used by default

	Fix quantity_to_decimal and quantity_to_fraction to strip leading and trailing
spaces before pattern matching and converting to a decimal or fraction

	Allow for leading negative sign with forms.FractionField input values

	Fix is_fraction() to allow leading negative sign

	Add max_digits and decimal_places params to DecimalFractionField in test model

	Additional test cases for models.fields.DecimalFractionField

0.4.0 (2016-08-29)

	Added djfractions.models.DecimalFractionField which stores fractions.Fraction values as decimals in the dataase.

	Better usage of tox to test against different Python and Django versions

	Added testing against Django 1.10

0.3.2 (2015-08-28)

	Fixed boolean logic for when to coerce values to thirds in
in forms.DecimalFractionField and get_fraction_parts()

0.3.1 (2015-08-12)

	HISTORY.rst typo fixes

	pypi release version fix

0.3.0 (2015-08-12)

	Added forms.FractionField which returns fractions.Fraction instances

	Refactoring of common code with new forms.FractionField

	Smarter checking for numeric types throughout the code

	forms.DecimalFractionField.to_python() handles fractions.Fraction values now

	Fixed bug handling negative numbers in quantity_to_decimal()

	Added min_value and max_value to forms.DecimalFractionField

	Made coerce_thirds, limit_denominator, and use_mixed_numbers params to DecimalFractionField
proper named parameters and not just kwargs.

0.2.1 (2015-08-06)

	Fixed typo in usage docs

0.2.0 (2015-08-06)

	display_fraction template tag output is templated so that its formatting can be changed by users

	Added new display_improper_fraction template tag to simplify the common case of wanting to only use
improper fractions with no whole numbers

	Added unicode_entity to template context for display_fraction and display_improper_fraction so that
the html entity for common fractions may be used rather than <sup> and <sub> tags

	Refactored lots of code out into smaller, reusable functions

	Added a bunch of test cases

0.1.0 (2015-08-01)

	First release on PyPI.

Index

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_images/django-fractions.png
Ppypi package 3.1.0

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to django-fractions’s documentation!

 		
 django-fractions

 		
 Documentation

 		
 Quickstart

 		
 Features

 		
 TODO

 		
 Cookiecutter Tools Used in Making This Package

 		
 Installation

 		
 Usage

 		
 Model Fields

 		
 DecimalFractionField

 		
 Form Fields

 		
 FractionField

 		
 DecimalFractionField

 		
 Template Tags

 		
 display_fraction

 		
 display_improper_fraction

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 Current

 		
 5.0.0 (2023-01-08)

 		
 4.0.0 (2022-08-10)

 		
 3.1.0 (2022-12-26)

 		
 3.0.0 (2022-08-10)

 		
 2.0.0 (2020-09-13)

 		
 1.1.0 (2017-06-04)

 		
 1.0.0 (2016-12-31)

 		
 0.4.0 (2016-08-29)

 		
 0.3.2 (2015-08-28)

 		
 0.3.1 (2015-08-12)

 		
 0.3.0 (2015-08-12)

 		
 0.2.1 (2015-08-06)

 		
 0.2.0 (2015-08-06)

 		
 0.1.0 (2015-08-01)

_static/up.png

_static/up-pressed.png

